Анализ связи ранжированных рядов. Построение вариационного ряда

картофель производство ранжированный статистический

На основе показателей таблицы 2 составляем ранжированные ряды по производству картофеля на 100 га пашни; по урожайности картофеля; по себестоимости. Зависимость между этими показателями изображаем графически.

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или убывающим (реже) значениям признака.

Существуют три формы вариационного ряда: ранжированный ряд, дискретный ряд, интервальный ряд. Вариационный ряд часто называют рядом распределения.

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака

Ранжирование - это процедура упорядочения объектов изучения, которая выполняется на основе предпочтения. Вариационный размах показывает, насколько велико различие между единицами совокупности.

Ранг - это порядковый номер значений признака, расположенных в порядке возрастания или убывания их величин. Если значение признака имеют одинаковую количественную оценку, то ранг всех этих значений принимается равным средней арифметической от соответствующих номеров мест, которые определяют. Данные ранги называются связными.

Графики в статистике - это способ наглядного изображения статистических показателей в виде геометрических фигур и знаков, рисунков или схематических карт. Наглядное изображение облегчает восприятие информации, позволяет охватить совокупность показателей во взаимосвязи, выявить тенденцию развития и типичные соотношения показателей.

Для изображения показателей динамики целесообразно использовать линейные графики или столбиковые диаграммы. График должен быть наглядным, понятны, легко читаемым и по возможности художественно оформленным, что привлечет к нему внимание.

При построении точечных диаграмм в качестве графических образцов применяется совокупность точек; при построении линейных - линии. Построение графика всегда творческий процесс. Здесь необходим некоторый поиск. Лишь после составления и сравнения нескольких черновых вариантов можно определить правильную композицию графика, установить масштабы и расположение знаков на поле графика.

Из ранжированного ряда по производству картофеля на 100 га пашни, можно сделать следующий вывод, что самое низкое производство наблюдается в Балаганском районе, а наибольшей производительностью картофеля со 100 га пашни отличается Ангарский район.

Наименьшая урожайность была в Качугском районе-10 ц/га, а наибольшая в Усольском - 195,5 ц/га.

В Чунском районе при высоком производстве картофеля на 100 га пашни, соответствовала наименьшая себестоимость 1 ц. Максимальная себестоимость наблюдается в Нижне-Илимском районе. Размах вариации себестоимости центнера картофеля очень велик и равен 1161,01 р.

Другие публикации

Анализ хозяйственной деятельности предприятия
Переход к рыночной экономике требует от предприятия повышения эффективности производства, конкурентоспособности продукции и услуг на основе внедрения эффективных форм хозяйствования и управления производством, достижений научно-технического прогресса, активизации п...

Анализ финансово-хозяйственной деятельности ОАО ТрансКонтейнер
Финансовый анализ представляет собой процесс, основанный на изучении данных о финансовом состоянии предприятия и результатах его деятельности в прошлом с целью оценки будущих условий и результатов деятельности. Таким образом, главной задачей финансового анализа явл...

Ранжирование – процедура упорядочивания любых объектов по возрастанию или убыванию некоторого их свойства при условии, что они этим свойством обладают.

Можно ранжировать:

Государство по уровню жизни, рождаемости, безработице;

Профессии по престижности;

Товары по предпочтению потребителей;

Респондентов по политической активности, материальному положению;

Объектами ранжирования являются те объекты, которые непосредственно упорядочиваются. Основание ранжирование (ранжирующий признак) – то свойство, по которому объекты упорядочиваются. В результате ранжирования получаем ранжированный ряд, в котором каждому объекту приписывается свой индивидуальный ранг – место объекта в ранжированном ряду. Число мест и, соответственно, число рангов в ранжированном ряду равняется числу объектов.

Виды ранжированных рядов:

1) каждый объект имеет значение признака, отличное от значений признака других объектов, тогда каждому объекту ранжированного ряда присваивается свой, отличный от другого объекта, ранг;

2) несколько объектов имеют одинаковое значение признака, тогда этим объектам в ранжированном ряду присваивается одинаковые ранги, рассчитанные по определенной формуле. В этом случае ранжированный ряд называется ранжированным рядом со связанными рангами. При решении задач первый ранг будем присваивать наибольшему значению признака. Связанный ранг рассчитывается как среднее значение мест, занимаемых объектами, имеющими одинаковое значение признака. Установление статистической связи для 2-х и более ранжированных рядов осуществляется с помощью ранговых коэффициентов связи – такие коэффициенты, которые позволяют вычислять степень согласованности в ранжировании одних и тех же объектов по двум различным основаниям (признакам). Наиболее распространенным коэффициентом ранговой связи (ранговой корреляции) является коэффициент ρ-Спирмена.

Допустим, что н объектов упорядочены по признаку х и по признаку у. Пусть

Мера несовпадений рангов i-того объекта: d i = R x i - R y i

Свойства:

Изменяется в интервале от -1 до 1;

Ро = 1, если наблюдается полная согласованность ранжированных рядов; ранги одного и того же объекта по двум признакам совпадают.

Ро = -1, если полная несогласованность ранжированных рядов; такая ситуация возникает, если ранговые ряды имеют обратное направление: R x i – 1 2 3 4 5; R y i – 5 4 3 2 1.

Замечание: может рассчитываться для двух видов равных (если каждый объект свой ранг и если имеются связанные ранги).

Проверка гипотезы о статистической значимости коэффициента ρ-Спирмена.

H 0: ρ гс = 0

H 1: ρ гс ≠ 0

Нулевая гипотеза всегда утверждает, что ρ равен 0. Альтернативная – что значение ρ отлично от 0.

Уровень значимости как в таблицах сопряженности.

Государство А Б В Г Д Е Ж З И
Качество жизни 6,8 7,0 6,5 5,9 4,6 5,7 4,5 5,8 4,0
Безработица 20,3 18,0 19,8 23,4 21,6 20,8
Ранг x
Ранг y
|d i |
d 2 i
Σ d 2 i

τ -Кендалла – разность между вероятностями правильного и неправильного порядка для двух наблюдений, извлечённых из совокупности случайно при условии, что связанные ранги отсутствуют. Свойства:

Изменяется от -1 до 1;

Если признаки х и у статистически независимы, то коэффициент τ обращается в 0; если τ равен 0, еще не значит, что признаки статистически независимы;

Если τ равен 1, это значит, что между признаками имеется полная прямая статистическая связь или ранжированные ряды полностью согласованы; если τ равно -1, это значит, что присутствует полная обратная статистическая связь, или ранжированные ряды являются несогласованными.

S – общее число пар объектов с согласованным правильным порядком по обоим объектам. D – общее число пар объектов с несогласованным неправильным порядком по обоим объектам.

Проверка гипотезы о статистической значимости коэффициента τ:

H 0: τ гс = 0

H 1: τ гс ≠ 0

Коэффициент τ является статистически значимым, если его значения для ГС отлично от 0.

|Z H | > Z кр => H 1

Если ранжированный ряд построим для малого числа объектов, то подтверждение нулевой гипотезы нам говорит о том, что нужно изучить большее количество объектов.

Если изучено достаточное количество объектов, то подтверждение нулевой гипотезы говорит о том, что связь между признаками отсутствует.

Множественный коэффициент ранговой связи

Применяется в тех случаях, когда необходимо измерить связь между более чем 2 ранжированными рядами (например, когда мы хотим оценить согласованность мнений экспертов (более 2) при оценке 1 и тех же объектов).

S – сумма квадратичных отклонений значений рангов по строке от среднего ранга для всей совокупности. k 2 – число переменных (число экспертов). n – число ранжируемых объектов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Задание №1

На основании данных статистического наблюдения, приведенных в таблице построить ранжированный, интервальный и кумулятивный ряды распределения сельскохозяйственных предприятий по факторному признаку, изобразить их графически.

Провести сводку данных. Посредством метода группировок определите зависимость результативного признака в сельскохозяйственных предприятиях от факторного. Построить таблицы и графики зависимости. Вывод.

группировка ряд распределение факторный

Качество почвы,баллы (х)

(у)

Решение:

Построение ранжированного ряда распределения предполагает расположение всех вариантов ряда в порядке возрастания изучаемого признака (качества почвы). Проведение сортировки производилось в программе ТП Excel с использованием функции "Сортировка".

Качество почвы

Урожайность овощей открытого грунта

Графическое изображение ранжированного ряда распределения

Линия на рис.1 носит название огива Гальтона. Данная огива имеет тенденцию плавного роста с небольшими скачками в некоторых точках. Для преобразования ранжированного ряда в интервальный лучше выполнить разбивку на группы вручную.

Построение интервального ряда распределения предприятий по изучаемому признаку предполагает определение числа групп (интервалов).

Для расчета числа групп воспользуемся формулой:

n=2 , где N-общее число единиц изучаемой совокупности.

n=2 Ig30 = 2,95424251?3.

Величина равного интервала вычисляется по формуле:

i = = = 16,33333

Кумулятивный ряд - это ряд в котором подсчитываются накопленные частоты. Он показывает, сколько единиц совокупности имеют значение признака не больше, чем данное значение, и вычисляется путем последовательного прибавления к частоте первого интервала частот последующих интервалов.

Интервальный и кумулятивный ряды

частота - число предприятий в группе;

Удельный вес предприятий в группе - находится по формуле:

(число предприятий в группе*100%)/ m , где m-число экспериментальных данных;

Накопленная частота - находится по формуле: число предприятий в предедущей группе +частота данной группы.

Гистограмма частот

Кумулята распределения качества почвы

Сводные показатели

№ группы

Число предприятий в группе

Урожайность овощей открытого грунта (всего по группам)

Качество почвы (всего по группам)

II 61,33333-77,33333

III 77,33333-94,1

Средние характеристики групп

№ Группы

Урожайность овощей открытого грунта

Качество почвы

II 61,33333-77,33333

III 77,33333-94,1

В среднем по совокупности

где, столбец "урожайность овощей" находится по формуле: У У i группе ) / число предприятий в группе ;

столбец "Качество почвы" находится по формуле: У Х i группе)/число предприятий в группе.

Зависимость урожайности овощей открытого грунта от качества почвы.

В рассматриваемом примере можно сделать вывод: с ростом качества почвы увеличивается урожайность овощей открытого грунта, следовательно можно предположить наличие прямой связи между рассматриваемыми параметрами.

Размещено на Allbest.ru

Подобные документы

    Аналитическая группировка по факторному признаку. Построение вариационного частотного и кумулятивного рядов распределения на основе равно интервальной структурной группировки результативного признака – дивидендов, начисленных по результатам деятельности.

    контрольная работа , добавлен 07.05.2009

    Основные показатели численности населения и его размещения по Калужской области. Построение ранжированного и интервального рядов распределения по одному группировочному факторному признаку. Анализ типических групп по показателям в среднем по совокупности.

    курсовая работа , добавлен 11.10.2010

    Построение с помощью формулы Стержесса. Построение рядов распределения с произвольными интервалами. Построение рядов распределения с помощью среднего квадратического отклонения. Классификация рядов распределения. Расчет основных характеристик вариации.

    курсовая работа , добавлен 22.11.2013

    Анализ, расчет и построение исходных динамических рядов признака-функции и признака-фактора. Расчет показателей вариации динамических рядов. Количественное измерение тесноты связи признака-функции и признаков-факторов методом парной корреляции.

    курсовая работа , добавлен 24.09.2014

    Оценка совокупности на предмет её однородности. Построение ранжированного и интервального рядов распределения. Анализ рядов динамики методами укрупнения интервалов и скользящей средней, аналитическое выравнивание по уравнению прямой и параболы.

    курсовая работа , добавлен 10.09.2014

    Расчет среднего балла успеваемости по данным результатов сессии, определение показателя вариаций уровня знаний и структуры численности студентов по успеваемости. Построение интервального ряда распределения предприятий. Оценка коэффициентов корреляции.

    контрольная работа , добавлен 21.08.2009

    Понятие и виды статистической группировки, производимой с целью установления статистических связей и закономерностей, выявления структуры изучаемой совокупности. Построение интервального ряда распределения предприятий по признаку "торговая площадь".

    дипломная работа , добавлен 14.02.2016

    Основные категории статистики. Группировка - основа научной обработки данных статистики. Содержание сводки и статистическая совокупность. Построение вариационного, ранжированного и дискретного рядов распределения. Группировка предприятий по числу рабочих.

    контрольная работа , добавлен 17.03.2015

    Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа , добавлен 20.05.2010

    Проведение экспериментального статистического исследования социально-экономических явлений и процессов Смоленской области на основе заданных показателей. Построение статистических графиков, рядов распределения, вариационных рядов, их обобщение и оценка.

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существуют три формы вариационного ряда: ранжированный, дискретный, интервальный. Вариационный ряд часто называют рядом распределения. Этот термин употребляется при изучении вариации как количественных, так и неколичественных признаков. Ряд распределения представляет собой структурную группировку (гл. 6).

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.

Ниже приведены сведения о крупных банках Санкт-Петербурга, ранжированных по размерам собственного капитала на 01.10.1999 г.

Название банка Собственный капитал, млн руб.

Балтонэксим банк 169

Банк «Санкт-Петербург» 237

Петровский 268

Балтийский 290

Промстройбанк 1007

Если численность единиц совокупности достаточно велика, ранжированный ряд становится громоздким, а его построение, даже с помощью компьютера, занимает длительное время. В таких случаях вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Определение числа групп

Число групп в дискретном вариационном ряду определяется числом реально существующих значений варьирующего признака. Если признак принимает дискретные значения, но их число очень велико (например, поголовье скота на 1 января года в разных сельскохозяйственных предприятиях может составить от нуля до десятков тысяч голов), то строится интервальный вариационный ряд. Интервальный вариационный ряд строится и для изучения признаков, которые могут принимать любые, как целые, так и дробные значения в области своего существования. Таковы, например, рентабельность реализованной продукции, себестоимость единицы продукции, доход на одного жителя города, доля лиц с высшим образованием среди населения разных территорий и вообще все вторичные признаки, значения которых рассчитываются путем деления величины одного первичного признака на величину другого (см. гл. 3).

Интервальный вариационный ряд представляет собой таблицу, состоящую из двух граф (или строк) - интервалов признака, вариация которого изучается, и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа от общей численности совокупности (частостей).

Наиболее часто используются два вида интервальных вариационных рядов: равноинтервальный и равночастотный. Равноинтервальный ряд применяется, если вариация признака не очень сильна, т.е. для однородной совокупности, распределение которой по данному признаку близко к нормальному закону. (Такой ряд представлен в табл. 5.6.) Равночастотный ряд применяется, если вариация признака очень сильна, однако распределение не является нормальным, а, например, гиперболическим (табл. 5.5).

При построении равноинтервального ряда число групп выбирается так, чтобы в достаточной мере отразились разнообразие значений признака в совокупности и в то же время закономерность распределения, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.


Границы интервалов могут указываться разным образом: верхняя граница предыдущего интервала повторяет нижнюю границу следующего, как показано в табл. 5.5, или не повторяет.

В последнем случае второй интервал будет обозначен как 15,1-20, третий - как 20,1-25 и т.д., т.е. предполагается, что все значения урожайности обязательно округлены до одной десятой. Кроме того, возникает нежелательное осложнение с серединой интервала 15,1-20, которая, строго говоря, уже будет равна не 17,5, а 17,55; соответственно при замене округленного интервала 40-60 на 40,1-60 вместо округленного значения его середины 50 получим 50,5. Поэтому предпочтительнее оставить интервалы с повторяющейся округленной границей и договориться, что единицы совокупности, имеющие значение признака, равное границе интервала, включаются в тот интервал, где это точное значение впервые указывается. Так, хозяйство, имеющее урожайность, равную 15 ц/га, включается в первую группу, значение 20 ц/га - во вторую и т.д.

Равночастотный вариационный ряд необходим при очень сильной вариации признака потому, что при равноинтерваль-ном распределении большая часть единиц совокупности ока-

Таблица 5.5

Распределение 100 банков России по балансовой оценке активов на 01.01.2000 г.

Границы интервалов при равночастотном распределении - это фактические величины активов первого, десятого, одиннадцатого, двадцатого и так далее банков.

Графическое изображение вариационного ряда

Существенную помощь в анализе вариационного ряда и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные на оси абсцисс, - это интервалы значений варьирующего признака, а высота столбиков - частоты, соответствующие масштабу по оси ординат. Графическое изображение распределения хозяйств области по урожайности зерновых культур приведено на рис. 5.1. Диаграмма этого рода часто называется гистограммой (гр. histos - ткань).

Данные табл. 5.6 и рис. 5.1 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже - крайние, малые и большие значения признака. Форма этого распределения близка к рассматриваемому в курсе математической статистики закону нормального распределения. Великий русский математик А. М. Ляпунов (1857-1918) доказал, что нор-

Таблица 5.6 Распределение хозяйств области по урожайности зерновых культур

мальное распределение образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего влияния. Случайное сочетание множества примерно равных факторов, влияющих на вариации урожайности зерновых культур, как природных, так и агротехнических, экономических, создает близкое к нормальному закону распределения распределение хозяйств области по урожайности.

Рис. 5.2. Кумулята и огива распределения хозяйств по урожайности

Такой ряд называется кумулятивным. Можно построить кумулятивное распределение «не меньше, чем», а можно «больше, чем». В первом случае график кумулятивного распределения называется кумулятой, во втором - огивой (рис. 5.2).

Плотность распределения

Если приходится иметь дело с вариационным рядом с неравными интервалами, то для сопоставимости нужно частоты, или частости, привести к единице интервала. Полученное отношение называется плотностью распределения:

Плотность распределения используется как для расчета обобщающих показателей, так и для графического изображения вариационных рядов с неравными интервалами.

Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности. В зависимости от того, какой признак (количественный или качественный) взят за основу группировки данных, различают соответственно типы рядов распределения.

Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.).

Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным . Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд .

Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Частоты ряда f могут заменяться частостями w, выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме, т.е.:

При построении вариационного ряда с интервальными значениями прежде всего необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп m:

где R = xmax - xmin ; m = 1 + 3,322 lgn (формула Стерджесса); n - общее число единиц совокупности.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода, или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду.

Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда.

Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 3, 6, 7, 9, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. пятая величина.

Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин.

То есть для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формуле

где n - число единиц в совокупности.

Численное значение медианы определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы

где xМе - нижняя граница медианного интервала; i - величина интервала; S-1 - накопленная частота интервала, которая предшествует медианному; f - частота медианного интервала.

Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды, необходимо использовать формулу

где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Основной целью анализа вариационных рядов является выявление закономерности распределения, исключая при этом влияние случайных для данного распределения факторов. Этого можно достичь, если увеличивать объем исследуемой совокупности и одновременно уменьшать интервал ряда. При попытке изображения этих данных графически мы получим некоторую плавную кривую линию, которая для полигона частот будет являться некоторым пределом. Эту линию называют кривой распределения.

Иными словами, кривая распределения есть графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, которое функционально связано с изменением вариант. Кривая распределения отражает закономерность изменения частот при отсутствии случайных факторов. Графическое изображение облегчает анализ рядов распределения.

Известно достаточно много форм кривых распределения, по которым может выравниваться вариационный ряд, но в практике статистических исследований наиболее часто используются такие формы, как нормальное распределение и распределение Пуассона.

Нормальное распределение зависит от двух параметров: средней арифметической и среднего квадратического отклонения . Его кривая выражается уравнением

где у - ордината кривой нормального распределения; - стандартизованные отклонения; е и π - математические постоянные; x - варианты вариационного ряда; - их средняя величина; - cреднее квадратическое отклонение.

Если нужно получить теоретические частоты f" при выравнивании вариационного ряда по кривой нормального распределения, то можно воспользоваться формулой

где - сумма всех эмпирических частот вариационного ряда; h - величина интервала в группах; - cреднее квадратическое отклонение; - нормированное отклонение вариантов от средней арифметической; все остальные величины легко вычисляются по специальным таблицам.

При помощи этой формулы мы получаем теоретическое (вероятностное) распределение , заменяя им эмпирическое (фактическое) распределение , по характеру они не должны отличаться друг от друга.

Тем не менее в ряде случаев, если вариационный ряд представляет собой распределение по дискретному признаку, где при увеличении значений признака х частоты начинают резко уменьшаться, а средняя арифметическая, в свою очередь, равна или близка по значению к дисперсии (), такой ряд выравнивается по кривой Пуассона.

Кривую Пуассона можно выразить отношением

где Px - вероятность наступления отдельных значений х; - средняя арифметическая ряда.

При выравнивании эмпирических данных теоретические частоты можно определить по формуле

где f" - теоретические частоты; N - общее число единиц ряда.

Сравнивая полученные величины теоретических частот f" c эмпирическими (фактическими) частотами f, убеждаемся, что их расхождения могут быть весьма невелики.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия.

Для оценки близости эмпирических и теоретических частот применяются критерий согласия Пирсона, критерий согласия Романовского, критерий согласия Колмогорова.

Наиболее распространенным является критерий согласия К. Пирсона , который можно представить как сумму отношений квадратов расхождений между f" и f к теоретическим частотам:

Вычисленное значение критерия необходимо сравнить с табличным (критическим) значением . Табличное значение определяется по специальной таблице, оно зависит от принятой вероятности Р и числа степеней свободы k (при этом k = m - 3, где m - число групп в ряду распределения для нормального распределения). При расчете критерия согласия Пирсона должно соблюдаться следующее условие: достаточно большим должно быть число наблюдений (n 50), при этом если в некоторых интервалах теоретические частоты < 5, то интервалы объединяют для условия > 5.

Если , то расхождения между эмпирическими и теоретическими частотами распределения могут быть случайными и предположение о близости эмпирического распределения к нормальному не может быть отвергнуто.

В том случае, если отсутствуют таблицы для оценки случайности расхождения теоретических и эмпирических частот, можно использовать критерий согласия В.И. Романовского КРом, который, используя величину , предложил оценивать близость эмпирического распределения кривой нормального распределения при помощи отношения

где m - число групп; k = (m - 3) - число степеней свободы при исчислении частот нормального распределения.

Если вышеуказанное отношение < 3, то расхождения эмпирических и теоретических частот можно считать случайными, а эмпирическое распределение - соответствующим нормальному. Если отношение > 3, то расхождения могут быть достаточно существенными и гипотезу о нормальном распределении следует отвергнуть.

Критерий согласия А.Н. Колмогорова используется при определении максимального расхождения между частотами эмпирического и теоретического распределения, вычисляется по формуле

где D - максимальное значение разности между накопленными эмпирическими и теоретическими частотами; - сумма эмпирических частот.

По таблицам значений вероятностей -критерия можно найти величину , соответствующую вероятности Р. Если величина вероятности Р значительна по отношению к найденной величине , то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны.

Необходимым условием при использовании критерия согласия Колмогорова является достаточно большое число наблюдений (не меньше ста).